Daniel Kliewer

Building Full-Stack AI Persona Generator: Complete Django + React Tutorial with LLM Integration

7 min read
DjangoReactAIWeb DevelopmentPersona GenerationTutorialPythonJavaScriptREST APILLM IntegrationFull-Stack

Image

Ah, my dear companion on this journey through the labyrinthine corridors of technology, let us embark upon the noble endeavor of crafting an application that bridges the realms of Django and React. This is not merely a technical exercise but a quest to weave together the threads of human creativity and machine logic, much like the intricate tapestries of old.

Table of Contents

  1. Introduction
  2. The Vision of Our Endeavor
  3. Setting the Foundation
    • Installing the Pillars of Technology
  4. Forging the Backend with Django
    • Crafting the API
    • Integrating the Language Model
  5. Sculpting the Frontend with React
    • Building the User Interface
    • Establishing Communication with the Backend
  6. Melding Minds: The Python Script
    • Understanding the Persona
    • Generating the Prose
  7. Bringing It All Together
    • Running the Application
    • Experiencing the Creation
  8. Reflection on the Journey

1. Introduction

In the quiet depths of contemplation, we recognize the profound impact of technology on the human spirit. Our task is to create an application—a harmonious blend of Django and React—that not only serves a function but also resonates with the essence of creativity.

2. The Vision of Our Endeavor

We aspire to build a platform where one can encode a persona, imbued with rich psychological traits, and generate writings that reflect this intricate character. It is an exploration of identity, an attempt to mirror the complexities of human consciousness within the constructs of code.

3. Setting the Foundation

Like architects laying the cornerstone of a grand edifice, we must first prepare our tools and materials.

Installing the Pillars of Technology

  1. Python and Django:

    • Install Python from the official website.

    • Utilize pip to install Django:

      Bash
      pip install django
      
  2. Node.js and React:

    • Download Node.js from the official website.

    • Install Create React App globally:

      Bash
      npm install -g create-react-app
      
  3. Additional Dependencies:

    • For the backend, install the Django REST Framework:

      Bash
      pip install djangorestframework
      
    • For the frontend, we may choose to use Axios for HTTP requests:

      Bash
      npm install axios
      

4. Forging the Backend with Django

Our backend shall be the foundation upon which the application stands, much like the steadfast roots of an ancient tree.

Crafting the API

  1. Initialize the Django Project:

    Bash
    django-admin startproject persona_project
    cd persona_project
    
  2. Create the Core App:

    Bash
    python manage.py startapp core
    
  3. Configure settings.py:

    • Add 'core' and 'rest_framework' to INSTALLED_APPS.
  4. Define the Models in core/models.py:

    Python
    from django.db import models
    
    class Persona(models.Model):
        name = models.CharField(max_length=100)
        data = models.JSONField()
    
        def __str__(self):
            return self.name
    
  5. Create Serializers in core/serializers.py:

    Python
    from rest_framework import serializers
    from .models import Persona
    
    class PersonaSerializer(serializers.ModelSerializer):
        class Meta:
            model = Persona
            fields = '__all__'
    
  6. Develop Views in core/views.py:

    Python
    from rest_framework.views import APIView
    from rest_framework.response import Response
    from rest_framework import status
    from .serializers import PersonaSerializer
    from .models import Persona
    import requests
    
    class GeneratePersonaView(APIView):
        def post(self, request):
            # Logic to generate persona using the provided writing sample
            return Response({"message": "Persona generated"}, status=status.HTTP_200_OK)
    
    class GenerateTextView(APIView):
        def post(self, request):
            # Logic to generate text based on persona and prompt
            return Response({"message": "Text generated"}, status=status.HTTP_200_OK)
    
  7. Set Up URLs in persona_project/urls.py:

    Python
    from django.contrib import admin
    from django.urls import path, include
    
    urlpatterns = [
        path('admin/', admin.site.urls),
        path('api/', include('core.urls')),
    ]
    

    And in core/urls.py:

    Python
    from django.urls import path
    from .views import GeneratePersonaView, GenerateTextView
    
    urlpatterns = [
        path('generate-persona/', GeneratePersonaView.as_view(), name='generate_persona'),
        path('generate-text/', GenerateTextView.as_view(), name='generate_text'),
    ]
    

Integrating the Language Model

Our endeavor requires the integration with a language model to breathe life into our personas.

  1. Install Required Libraries:

    Bash
    pip install requests
    
  2. Implement the Interaction with the LLM in core/views.py:

    • Utilize the provided Python script logic to communicate with the LLM API.

    • Example for generating persona:

      Python
      def post(self, request):
          writing_sample = request.data.get('writing_sample')
          if not writing_sample:
              return Response({"error": "Writing sample is required"}, status=status.HTTP_400_BAD_REQUEST)
      
          # Build the prompt and call the LLM API
          # ...
      
          # Save the persona
          persona_data = {
              "name": "Generated Name",
              "data": {}  # The JSON data from the LLM
          }
          serializer = PersonaSerializer(data=persona_data)
          if serializer.is_valid():
              serializer.save()
              return Response(serializer.data, status=status.HTTP_201_CREATED)
          else:
              return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
      
  3. Handle the Response from the LLM:

    • Parse the JSON response carefully, handling any errors with grace.

5. Sculpting the Frontend with React

Now, let us turn to the facade of our creation, the interface through which users shall interact.

Building the User Interface

  1. Initialize the React App:

    Bash
    npx create-react-app persona-frontend
    cd persona-frontend
    
  2. Install Axios:

    Bash
    npm install axios
    
  3. Create Components:

    • Upload Component:

      JSX
      // src/components/UploadSample.js
      import React, { useState } from 'react';
      import axios from 'axios';
      
      const UploadSample = () => {
        const [file, setFile] = useState(null);
      
        const handleFileChange = (e) => {
          setFile(e.target.files[0]);
        };
      
        const handleSubmit = async (e) => {
          e.preventDefault();
          const formData = new FormData();
          formData.append('writing_sample', file);
      
          try {
            const response = await axios.post('/api/generate-persona/', formData);
            console.log(response.data);
          } catch (error) {
            console.error(error);
          }
        };
      
        return (
          
      ); }; export default UploadSample;
    • Generate Text Component:

      JSX
      // src/components/GenerateText.js
      import React, { useState } from 'react';
      import axios from 'axios';
      
      const GenerateText = () => {
        const [prompt, setPrompt] = useState('');
        const [generatedText, setGeneratedText] = useState('');
      
        const handleGenerate = async () => {
          try {
            const response = await axios.post('/api/generate-text/', { prompt });
            setGeneratedText(response.data.text);
          } catch (error) {
            console.error(error);
          }
        };
      
        return (